Wavelet-based Estimation of Hemodynamic Response Function from Fmri Data

نویسندگان

  • Ryali Srikanth
  • A. G. Ramakrishnan
چکیده

We present a new algorithm to estimate hemodynamic response function (HRF) and drift components of fMRI data in wavelet domain. The HRF is modeled by both parametric and nonparametric models. The functional Magnetic resonance Image (fMRI) noise is modeled as a fractional brownian motion (fBm). The HRF parameters are estimated in wavelet domain by exploiting the property that wavelet transforms with a sufficient number of vanishing moments decorrelates a fBm process. Using this property, the noise covariance matrix in wavelet domain can be assumed to be diagonal whose entries are estimated using the sample variance estimator at each scale. We study the influence of the sampling rate of fMRI time series and shape assumption of HRF on the estimation performance. Results are presented by adding synthetic HRFs on simulated and null fMRI data. We also compare these methods with an existing method,(1) where correlated fMRI noise is modeled by a second order polynomial functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Hemodynamic Response Function in Vision and Motor Brain Regions for the Young and Elderly Adults

Introduction: Prior studies comparing Hemodynamic Response Function (HRF) in the young and elderly adults based on fMRI data have reported inconsistent findings for brain vision and motor regions in healthy aging. It is shown that the averaging method employed in all previous works has caused this inconsistency. The averaging is so sensitive to outliers and noise. However, fMRI data are o...

متن کامل

Locally Estimated Hemodynamic Response Function and Activation Detection Sensitivity in Heroin-Cue Reactivity Study

Introduction: A fixed hemodynamic response function (HRF) is commonly used for functional magnetic resonance imaging (fMRI) analysis. However, HRF may vary from region to region and subject to subject. We investigated the effect of locally estimated HRF (in functionally homogenous parcels) on activation detection sensitivity in a heroin cue reactivity study. Methods: We proposed...

متن کامل

Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation

Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...

متن کامل

Hemodynamic-Informed Parcellation of fMRI Data in a Joint Detection Estimation Framework

Identifying brain hemodynamics in event-related functional MRI (fMRI) data is a crucial issue to disentangle the vascular response from the neuronal activity in the BOLD signal. This question is usually addressed by estimating the so-called hemodynamic response function (HRF). Voxelwise or region-/parcelwise inference schemes have been proposed to achieve this goal but so far all known contribu...

متن کامل

Joint maximum likelihood estimation of activation and Hemodynamic Response Function for fMRI

Blood Oxygen Level Dependent (BOLD) functional magnetic resonance imaging (fMRI) maps the brain activity by measuring blood oxygenation level, which is related to brain activity via a temporal impulse response function known as the Hemodynamic Response Function (HRF). The HRF varies from subject to subject and within areas of the brain, therefore a knowledge of HRF is necessary for accurately c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of neural systems

دوره 16 2  شماره 

صفحات  -

تاریخ انتشار 2006